ui vt vl 1 L1 B B D DB D DB DD D DWW W W W W W W W WNDNDNDNDNDNMDNDMDNMDNMNMMNNREPERRERRERRRERERERERPRPRPRPRBR
A W N EFRP O OVOOWNO VLIPS, WNERO OOWONOUURAWNEROOOWONOUURPAWNRO OOWONOOUVMWNDNIEROO

W 00 N O VLT »h W N B

From: Mike Hearn <mike@plan99.net>
Date: Sun, Apr 12, 2009 at 12:46 PM
To: satoshin@gmx.com

Hi Satoshi,

I read your paper on BitCoin with great interest. I found it a bit
confusing though - I believe it may be easier to follow if you provide
some examples.

Specifically, it's not quite clear to me what blocks contain. If I
understand correctly, there is only one (or maybe a few) global
chain[s] into which all transactions are hashed. If there is only one
chain recording "the story of the economy” so to speak, how does this
scale? In an imaginary planet-wide deployment there would be millions
of even billions of transactions per hour being hashed into the chain.
I realize that each PoW can wrap many transactions in one block,
nonetheless, that's a large amount of data to hash. If there are many
chains, how are transactions assigned to each chain such that it is
still difficult to overpower the network? Eg, if there are 10 global
chains, the amount of cpu power you need to beat the system is only
10% of what it was previously.

I also wonder if the assumption of 1 core = 1 vote is sound. If the
majority of nodes are on standard computers, it seems likely that an
attacker could use FPGA or custom ASICs to get significantly better
performance. What are your thoughts on using custom hardware to beat
the chain?

I found the section on incentives hard to follow. In particular, I'm
not clear on what triggers the transition from minting new coins as a
reason to run a node, to charging transaction fees (isn't the point of
BitCoin largely to zero transaction costs anyway?). Presumably there's
some human in charge of the system - eg, you decided somehow that 24
million coins was a good number to have, and would distribute some
kind of rules file saying "coins minted after this timestamp must have
an N+1 zero bits prefix", which honest nodes enforce.

How did you decide on the inflation schedule for v1? Where did 24
million coins come from? What denominations are these coins? You
mention a way to combine and split value but I'm not clear on how this
works. For instance are bitcoins always denominated by an integer or
can you have fractional bitcoins?

So many questions :) But it's rare that I encounter truly
revolutionary ideas. The last time I was this excited about a new
monetary scheme was when I discovered Ripple. If you have any thoughts
on Ripple, I'd also love to hear them.

thanks -mike

From: Satoshi Nakamoto <satoshin@gmx.com>

55.
56.
57.
58.
59.
60.
61.

62.
63.
64.
65.

66.
67.

68.
69.

70.
71.

72.
73.

74.
75.

76.
77.

Date: Sun, Apr 12, 2009 at 10:44 PM
To: Mike Hearn <mike@plan99.net>

Hi Mike,

I'm glad to answer any questions you have. If I get time, I ought to write a FAQ to supplement the
paper.

There is only one global chain.

The existing Visa credit card network processes about 15 million Internet purchases per day worldwide.
Bitcoin can already scale much larger than that with existing hardware for a fraction of the cost. It
never really hits a scale ceiling. If you're interested, I can go over the ways it would cope with
extreme size.

By Moore's Law, we can expect hardware speed to be 10 times faster in 5 years and 100 times faster in
10. Even if Bitcoin grows at crazy adoption rates, I think computer speeds will stay ahead of the number
of transactions.

I don't anticipate that fees will be needed anytime soon, but if it becomes too burdensome to run a
node, it is possible to run a node that only processes transactions that include a transaction fee. The
owner of the node would decide the minimum fee they'll accept. Right now, such a node would get nothing,
because nobody includes a fee, but if enough nodes did that, then users would get faster acceptance if
they include a fee, or slower if they don't. The fee the market would settle on should be minimal. If a
node requires a higher fee, that node would be passing up all transactions with lower fees. It could do
more volume and probably make more money by processing as many paying transactions as it can. The
transition is not controlled by some human in charge of the system though, just individuals reacting on
their own to market forces.

Eventually, most nodes may be run by specialists with multiple GPU cards. For now, it's nice that anyone
with a PC can play without worrying about what video card they have, and hopefully it'll stay that way
for a while. More computers are shipping with fairly decent GPUs these days, so maybe later we'll
transition to that.

A key aspect of Bitcoin is that the security of the network grows as the size of the network and the
amount of value that needs to be protected grows. The down side is that it's vulnerable at the beginning
when it's small, although the value that could be stolen should always be smaller than the amount of
effort required to steal it. If someone has other motives to prove a point, they'll just be proving a
point I already concede.

My choice for the number of coins and distribution schedule was an educated guess. It was a difficult
choice, because once the network is going it's locked in and we're stuck with it. I wanted to pick
something that would make prices similar to existing currencies, but without knowing the future, that's
very hard. I ended up picking something in the middle. If Bitcoin remains a small niche, it'll be worth
less per unit than existing currencies. If you imagine it being used for some fraction of world
commerce, then there's only going to be 21 million coins for the whole world, so it would be worth much
more per unit. Values are 64-bit integers with 8 decimal places, so 1 coin is represented internally as
100000000. There's plenty of granularity if typical prices become small. For example, if 0.001 is worth
1 Euro, then it might be easier to change where the decimal point is displayed, so if you had 1 Bitcoin
it's now displayed as 1000, and 0.001 is displayed as 1.

Ripple is interesting in that it's the only other system that does something with trust besides
concentrate it into a central server.

78.

79. Satoshi

80.

8l, ----------

82. From: Mike Hearn <mike@plan99.net>

83. Date: Mon, Apr 13, 2009 at 1:39 PM

84. To: Satoshi Nakamoto <satoshin@gmx.com>

85.

86.

87. Thanks Satoshi,

88.

89. I tried the app yesterday. It seems to work pretty well running on
90. Wine (I tried it on MacOS but it should run on Linux too, and will try
91. that next week when I am back at work).

92.

93. In the lower right hand corner it has a block count which increases
94. rapidly and then stops. Is this the length of the global chain? It
95. seems to advance far too fast for that. Or is this the number of

96. genesis blocks that have been tried but did not result in a partial
97. collision? I'm not sure if the way it stops and starts is expected, or
98. some glitch caused by it running under emulation. My best guess - it
99. is the length of the global chain, and the rapid advance at the start
100. 1is as the software downloads and verifies the preceding blocks in the
101. chain as being valid.

102.

103. With regards to the buyer/seller experience, I understand that the
104. global chain advances at about 6-7 blocks per hour under the current
105. settings. If we assume that 0.1% is a good risk rate, then z=5 thus
106. any transaction must wait a bit less than an hour before being

107. solidified in the chain. As micropayments for things like web content
108. or virtual goods are by definition something that requires low

109. overhead, waiting an hour seems like quite a significant hurdle.

110.

111. I understand that nodes attempt to find a POW to advance the global
112. chain in an uncoordinated fashion. This sentence however:

113.

114. "If a majority of CPU power is controlled by honest nodes, the

115. honest chain will grow the fastest and outpace any competing chains.”
116.

117. 1is confusing for me, because it appears the only way the honest chain
118. can grow faster than a chain worked on by 1 attacking cpu is if the
119. keyspace to scan looking for a partial collision is sharded evenly
120. amongst the participating honest nodes. That way the speed at which
121. collisions are found would be proportional to the number of nodes. Yet
122. I don't see any discussion of such work sharding, which obviously adds
123. complexity. Likewise:

124.

125. "To compensate for increasing hardware speed and varying interest
126. in running nodes over time,

127. the proof-of-work difficulty is determined by a moving average

128. targeting an average number of

129. blocks per hour. If they're generated too fast, the difficulty increases.”
130.

131. How is the required difficulty of each block communicated through the

132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
l61.
162.
163.
164.
165.
166.
167.
168.
169.

170.
171.
172.
173.
174.
175.
176.
177.
178.
179.

180.
181.

network and agreed upon?

Thanks once again. I have yet more questions but this is enough for
one email :) I will be happy to summarize these discussions into an
FAQ-like document at some point. Apologies if the questions seem
trivial.

-mike

From: Mike Hearn <mike@plan99.net>
Date: Mon, Apr 13, 2009 at 10:51 PM
To: Satoshi Nakamoto <satoshin@gmx.com>

Something else that isn't clear to me - does the global chain only get
extended when there is actual work to do? Currently it seems to grow
all the time, although there are only a few people in the network. So
presumably it gets extended with null blocks. Is this actually
required? The timestamping doesn't have to be actually in parallel
with real time does it ... it's merely establishing an ordering of
events.

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Mon, Apr 13, 2009 at 11:00 PM
To: Mike Hearn <mike@plan99.net>

Mike Hearn wrote:

My best guess - it

is the length of the global chain, and the rapid advance at the start
is as the software downloads and verifies the preceding blocks in the
chain as being valid.

Right. I'm trying to think of more clear wording for that, maybe "%d network blocks" or "%d block
chain”.

If we assume that 0.1% is a good risk rate, then z=5 thus

any transaction must wait a bit less than an hour before being
solidified in the chain. As micropayments for things like web content
or virtual goods are by definition something that requires low
overhead, waiting an hour seems like quite a significant hurdle.

For the actual risk, multiply the ©.1% by the probability that the buyer is an attacker with a huge

network of computers.

For micropayments, you can safely accept the payment immediately. The size of the payment is too small
for the effort to steal it. Micropayments are almost always for intellectual property, where there's no

182.
183.

184.
185.

186.
187.

188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.

200.
201.
202.
203.
204.
205.
206.

207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.

physical loss to the merchant. Anyone trying to steal a micropayment would probably not be a paying
customer anyway, and if they want to steal intellectual property they can use the file sharing networks.

Currently, businesses accept a certain chargeoff rate. I believe the risk with 1 or even @ confirming
blocks will be much less than the rate of chargebacks on verified credit card transactions.

The usual scam against a merchant that doesn't wait for confirming blocks would be to send a payment to
a merchant, then quickly try to propagate a double-spend to the network before the merchant's copy. What
the merchant can do is broadcast his transaction and then monitor the network for any double-spend
copies. The thief would not be able to broadcast during the monitoring period or else the merchant's
node would receive a copy. The merchant would only have to monitor for a minute or two until most of the
network nodes have his version and it's too late for the thief's version to catch up and reach many
nodes. With just a minute or two delay, the chance of getting away without paying could be made much too
low to scam. A thief usually needs a high probability of getting an item for free to make it worthwhile.
Using a lot of CPU power to do the brute force attack discussed in the paper in addition to the above
scam would not increase the thief's chances very much.

Anything that grants access to something, like something that takes a while to download, access to a
website, web hosting, a subscription or service, can be cancelled a few minutes later if the transaction
is rejected.

is confusing for me, because it appears the only way the honest chain
can grow faster than a chain worked on by 1 attacking cpu is if the
keyspace to scan looking for a partial collision is sharded evenly
amongst the participating honest nodes. That way the speed at which
collisions are found would be proportional to the number of nodes. Yet
I don't see any discussion of such work sharding, which obviously adds
complexity.

The keyspace is huge, 27256. The thing being hashed includes the node's public key and a random nonce,
so the chance of any two nodes duplicating work on the same space is negligible.

How is the required difficulty of each block communicated through the
network and agreed upon?

It's not communicated. The formula is hardcoded in the program and every node does the same calculation
to know what difficulty is required for the next block. If someone diverged from the formula, their
block would not be accepted by the majority.

Thanks once again. I have yet more questions but this is enough for
one email :) I will be happy to summarize these discussions into an
FAQ-like document at some point. Apologies if the questions seem
trivial.

No problem, thanks for testing it on Mac Wine.

Satoshi

220.
221.
222.
223.
224.
225.

226.
227.
228.
229.
230.
231.
232.
233.
234,
235.
236.
237.
238.
239.
240.
241.
242.
243.
244
245.
246.
247.
248.
249.
250.

251.
252.

253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Mon, Apr 13, 2009 at 11:11 PM
To: Mike Hearn <mike@plan99.net>

It keeps getting extended all the time. If it stopped, an attacker would have time to catch up. Don't
worry, empty blocks aren't very big.

As you say, it's the order of events that matters.

From: Mike Hearn <mike@plan99.net>
Date: Mon, Apr 13, 2009 at 11:18 PM
To: Satoshi Nakamoto <satoshin@gmx.com>

Oh yes, of course, that's fundamental. Silly me. Thanks for your
answers. I'd recommend being over-explicit for early versions of the
software, something like "Global chain is currently %d blocks long".

I guess the key problem right now is that once you generate coins,
there's nobody to test it with, even for dummy transactions. Is there
a plan for a mailing list or some kind of trivial marketplace to give
people something to do with their newly minted bitcoins?

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Tue, Apr 14, 2009 at 7:41 PM
To: Mike Hearn <mike@plan99.net>

I started implementing a marketplace feature earlier that facilitates offering things for sale and
taking orders, it's only half done though. A bit like e-bay but without auctions, just "buy now". Among
other things, it would make it easy for anyone to offer currency exchange.

If you send to 1PhUXucRd8FzQved2KGK3gleKfTHPGjgFu and e-mail me your bitcoin address, or IP if you can
accept incoming connections, I'll send back the same amount +58@.

From: Mike Hearn <mike@plan99.net>
Date: Sat, Apr 18, 2009 at 3:08 PM
To: Satoshi Nakamoto <satoshin@gmx.com>

Hi Satoshi,

I sent you 32.51 coins, my bitcoin address is 1JuEjh9znXwqsy5RrnKqgzqY4Ldg7rnj5n

My IP is currently 84.73.233.199, however, it's a laptop so may or may
not be online at the time you act on this mail. I suggest using the
bitcoin address instead. It'd be convenient if the same comment
functionality was available via indirect transfer. Can the comment be
encrypted using the public key of the receiver and placed into a

269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.

280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Sat, Apr 18, 2009 at 6:16 PM
To: Mike Hearn <mike@plan99.net>

I sent back 32.51 and 50.00.

I badly wanted to find some way to include a comment with indirect transfers, but there just wasn't a
way to do it. Bitcoin uses EC-DSA, which was essential for making the block chain compact enough to be
practical with today's technology because its signatures are an order of magnitude smaller than RSA. But
EC-DSA can't encrypt messages like RSA, it can only be used to verify signatures.

From: Mike Hearn <mike@plan99.net>
Date: Sat, Apr 18, 2009 at 9:25 PM
To: Satoshi Nakamoto <satoshin@gmx.com>

Thanks. I sent you back 50, so now we're even.

For some reason your transfer to me shows up as "From: unknown" even
though I added you to my address book.

I have a "Generated (not accepted)" line in my transaction list, it
seems like an attempt to generate a coin went wrong somehow. Not sure
what happened here - presumably my node successfully solved a block
but then I went offline before it was sent to the network?

I suppose for sending metadata with a transaction some other mechanism
will be needed, for instance, broadcast of encrypted messages
associated with a transaction that persist for (say) a month, with
some kind of budget on how much storage a node can use for messages.
Alternatively, a payee could generate some reference number which is
of some significance to themselves but otherwise opaque, and give it
to the payer, thus it does not need to be encrypted and can be put
into the block directly.

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Sat, Apr 18, 2009 at 10:52 PM
To: Mike Hearn <mike@plan99.net>

Got the 50.

Transactions sent to a bitcoin address will always say "from: unknown". The transaction only tells who
it's to. Sending by bitcoin address has a number of problems, but it's so nice having the fallback
option to be able to send to anyone whether they're online or not. There are a number of ideas to try to
improve things later. For now, if things work out like the real world where the vast majority of
transactions are with merchants, they'll pretty much always make sure to set up to receive by IP. The

P2P file sharing networks seem fairly successful at getting a large percentage of their users to set up
their firewalls to forward a port.

315.

316. The "Generated (not accepted)"” normally happens if two nodes find a block at close to the same time, one
of them will not be accepted. It's normal and unavoidable. I plan in v@.1.6 to hide those, since they're
just confusing and annoying and there's no reason for users to have to see them. While the network is
still small like it is now, if you can't receive incoming connections you're at more of a disadvantage
because you can't receive block announcements as directly.

317.

318. ~==-==--==-

319. From: Mike Hearn <mike@plan99.net>

320. Date: Sat, Apr 18, 2009 at 11:23 PM

321. To: Satoshi Nakamoto <satoshin@gmx.com>

322.

323.

324. Yes, I believe most P2P clients use the UPnP protocol to get routers

325. to open up the port automatically. That would probably improve the

326. listen rate significantly. I just discovered DMZ wasn't enabled on my

327. router, though I thought it was. That's now fixed.

328.

329. Is there a way to be told of new versions? Does the app auto update

330. itself? Again, some kind of mailing list would be excellent.

331.

332. I was thinking through how a practical micropayment implementation for

333. the web might work in the last few days. One key issue is ensuring

334. micropayments are fully automatic, yet can't be easily abused to drain

335. the users account. I think the right approach would be to allow any

336. website that presents an EV SSL cert to automatically request a

337. micropayment, by default the browser always accepts as long as the

338. charge is "low" and displays a small notification of what has

339. occurred. Sites can then show that content requires payment in any way

340. that suits their site design. Abusive sites that don't meet some

341. simple guidelines (eg, showing unambiguously that clicking a link will

342. trigger payment, or taking payment from direct search engine links)

343. would simply have their SSL cert blacklisted, much like anti-phishing

344. filters work today.

345.

346. The protocol could be very straightforward and implemented by a

347. Firefox extension or an IE BHO. Some static file (eg, a protocol

348. buffer) is hosted on the site. It specifies the charge, a transaction

349. description, the target IP and a URL for the browser to load after the

350. transaction was accepted by the target node, to which the user

351. identifier is sent in a URL parameter. The site can then give back a

352. cookie and the paywalled content. The entire process is automatic and

353. simply results in, say, a little coin animation in the URL bar. Thus

354. it's as convenient as regular web browsing. The users software would

355. have some limit on what payments are automatically accepted.

356.

357. The main problem with this approach is that somebody has to decide

358. what the user interface guidelines are, then enforce them via

359. blacklisting, as well as decide what payment requirements are low

360. enough to be automatic vs requiring a user prompt. This introduces a

361. trusted authority back into the system. However, it's one that the

362. user can choose in an open market.

363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.

383.
384.

385.
386.

387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.

By the way, if you're not already using protocol buffers for the
node-to-node traffic, I recommend them. We use them here at Google for
everything, they solve a lot of versioning problems simply and
efficiently.

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Sun, Apr 19, 2009 at 2:14 AM
To: Mike Hearn <mike@plan99.net>

The list is:

bitcoin-1list@lists.sourceforge.net

Subscribe/unsubscribe page:
http://lists.sourceforge.net/mailman/listinfo/bitcoin-1ist

Archives:
http://sourceforge.net/mailarchive/forum.php?forum_name=bitcoin-1list

I'11l always announce new versions there. Automatic update, or at least notification of new versions, is
definitely on the list. There could potentially be necessary changes in the future where nobody will
want to talk to you until you upgrade, and there needs to be code in the older version to convey that to
the user. This is all the harder in the context of not trusting anyone.

Your approach to micropayments sounds right. At first, it might be a good idea to default to asking
permission until the user gets comfortable and is ready to set it to automatic. The end goal though
should get to something like you describe, where it's similar to using your cell phone without really
having to think about the per minute charges.

I looked at Google protocol buffers when they were released last year, but I had already written
everything by then. What I did was something similar to Boost Serialisation. For this application, where
I was parsing messages from strangers who might have extreme incentive to hack the protocol, it was
necessary to make it as basic as possible so I could crawl over every line of code to convince myself it
was airtight. It became clear that any unnecessary degrees of freedom in the binary format multiplied
the potential angles of attack. You guys are so right though to standardize across the company on
protocol buffers. I think you've got the optimal solution in the general case.

From: Mike Hearn <mike@plan99.net>
Date: Thu, May 2, 2013 at 10:02 AM
To: satoshiarchive@gmail.com

Forwarded conversation
Subject: Questions about BitCoin

From: Mike Hearn <mike@plan99.net>
Date: Sun, Apr 12, 2009 at 12:46 PM
To: satoshin@gmx.com

405.
406.
407.
408.
409.
410.
411.
412.

413.
414.
415.
416.

417.
418.

419.
420.

421.
422.

423,
424,

425.
426.

427.

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Sun, Apr 12, 2009 at 10:44 PM
To: Mike Hearn <mike@plan99.net>

Hi Mike,

I'm glad to answer any questions you have. If I get time, I ought to write a FAQ to supplement the
paper.

There is only one global chain.

The existing Visa credit card network processes about 15 million Internet purchases per day worldwide.
Bitcoin can already scale much larger than that with existing hardware for a fraction of the cost. It
never really hits a scale ceiling. If you're interested, I can go over the ways it would cope with
extreme size.

By Moore's Law, we can expect hardware speed to be 10 times faster in 5 years and 100 times faster in
10. Even if Bitcoin grows at crazy adoption rates, I think computer speeds will stay ahead of the number
of transactions.

I don't anticipate that fees will be needed anytime soon, but if it becomes too burdensome to run a
node, it is possible to run a node that only processes transactions that include a transaction fee. The
owner of the node would decide the minimum fee they'll accept. Right now, such a node would get nothing,
because nobody includes a fee, but if enough nodes did that, then users would get faster acceptance if
they include a fee, or slower if they don't. The fee the market would settle on should be minimal. If a
node requires a higher fee, that node would be passing up all transactions with lower fees. It could do
more volume and probably make more money by processing as many paying transactions as it can. The
transition is not controlled by some human in charge of the system though, just individuals reacting on
their own to market forces.

Eventually, most nodes may be run by specialists with multiple GPU cards. For now, it's nice that anyone
with a PC can play without worrying about what video card they have, and hopefully it'll stay that way
for a while. More computers are shipping with fairly decent GPUs these days, so maybe later we'll
transition to that.

A key aspect of Bitcoin is that the security of the network grows as the size of the network and the
amount of value that needs to be protected grows. The down side is that it's vulnerable at the beginning
when it's small, although the value that could be stolen should always be smaller than the amount of
effort required to steal it. If someone has other motives to prove a point, they'll just be proving a
point I already concede.

My choice for the number of coins and distribution schedule was an educated guess. It was a difficult
choice, because once the network is going it's locked in and we're stuck with it. I wanted to pick
something that would make prices similar to existing currencies, but without knowing the future, that's
very hard. I ended up picking something in the middle. If Bitcoin remains a small niche, it'll be worth
less per unit than existing currencies. If you imagine it being used for some fraction of world
commerce, then there's only going to be 21 million coins for the whole world, so it would be worth much
more per unit. Values are 64-bit integers with 8 decimal places, so 1 coin is represented internally as
100000000. There's plenty of granularity if typical prices become small. For example, if 0.001 is worth
1 Euro, then it might be easier to change where the decimal point is displayed, so if you had 1 Bitcoin
it's now displayed as 1000, and 0.001 is displayed as 1.

428.

429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443,
444,
445,
446.
447.
448.
449.
450.
451,
452.
453.
454,
455,
456.
457.
458.
459,
460.
461.
462.
463.
464.
465.

466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.

477.

Ripple is interesting in that it's the only other system that does something with trust besides
concentrate it into a central server.

Satoshi

From: Mike Hearn <mike@plan99.net>
Date: Mon, Apr 13, 2009 at 1:39 PM
To: Satoshi Nakamoto <satoshin@gmx.com>

From: Mike Hearn <mike@plan99.net>
Date: Mon, Apr 13, 2009 at 10:51 PM
To: Satoshi Nakamoto <satoshin@gmx.com>

Something else that isn't clear to me - does the global chain only get
extended when there is actual work to do? Currently it seems to grow
all the time, although there are only a few people in the network. So
presumably it gets extended with null blocks. Is this actually
required? The timestamping doesn't have to be actually in parallel
with real time does it ... it's merely establishing an ordering of
events.

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Mon, Apr 13, 2009 at 11:00 PM
To: Mike Hearn <mike@plan99.net>

Mike Hearn wrote:

My best guess - it

is the length of the global chain, and the rapid advance at the start
is as the software downloads and verifies the preceding blocks in the
chain as being valid.

Right. I'm trying to think of more clear wording for that, maybe "%d network blocks" or "%d block
chain".

If we assume that 0.1% is a good risk rate, then z=5 thus

any transaction must wait a bit less than an hour before being
solidified in the chain. As micropayments for things like web content
or virtual goods are by definition something that requires low
overhead, waiting an hour seems like quite a significant hurdle.

For the actual risk, multiply the ©.1% by the probability that the buyer is an attacker with a huge
network of computers.

478.

479.
480.

481.
482.

483.
484.

485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.

498.
499.
500.
501.
502.
503.
504.
505.

506.
507.
508.
509.
510.
511.
512.
513.

For micropayments, you can safely accept the payment immediately. The size of the payment is too small
for the effort to steal it. Micropayments are almost always for intellectual property, where there's no
physical loss to the merchant. Anyone trying to steal a micropayment would probably not be a paying
customer anyway, and if they want to steal intellectual property they can use the file sharing networks.

Currently, businesses accept a certain chargeoff rate. I believe the risk with 1 or even @ confirming
blocks will be much less than the rate of chargebacks on verified credit card transactions.

The usual scam against a merchant that doesn't wait for confirming blocks would be to send a payment to
a merchant, then quickly try to propagate a double-spend to the network before the merchant's copy. What
the merchant can do is broadcast his transaction and then monitor the network for any double-spend
copies. The thief would not be able to broadcast during the monitoring period or else the merchant's
node would receive a copy. The merchant would only have to monitor for a minute or two until most of the
network nodes have his version and it's too late for the thief's version to catch up and reach many
nodes. With just a minute or two delay, the chance of getting away without paying could be made much too
low to scam. A thief usually needs a high probability of getting an item for free to make it worthwhile.
Using a lot of CPU power to do the brute force attack discussed in the paper in addition to the above
scam would not increase the thief's chances very much.

Anything that grants access to something, like something that takes a while to download, access to a
website, web hosting, a subscription or service, can be cancelled a few minutes later if the transaction
is rejected.

is confusing for me, because it appears the only way the honest chain
can grow faster than a chain worked on by 1 attacking cpu is if the
keyspace to scan looking for a partial collision is sharded evenly
amongst the participating honest nodes. That way the speed at which
collisions are found would be proportional to the number of nodes. Yet
I don't see any discussion of such work sharding, which obviously adds
complexity.

The keyspace is huge, 27256. The thing being hashed includes the node's public key and a random nonce,
so the chance of any two nodes duplicating work on the same space is negligible.

How is the required difficulty of each block communicated through the
network and agreed upon?

It's not communicated. The formula is hardcoded in the program and every node does the same calculation
to know what difficulty is required for the next block. If someone diverged from the formula, their
block would not be accepted by the majority.

Thanks once again. I have yet more questions but this is enough for
one email :) I will be happy to summarize these discussions into an
FAQ-like document at some point. Apologies if the questions seem
trivial.

514.

515. No problem, thanks for testing it on Mac Wine.

516.

517. Satoshi

518.

519.] ----=c----

520. From: Satoshi Nakamoto <satoshin@gmx.com>

521. Date: Mon, Apr 13, 2009 at 11:11 PM

522. To: Mike Hearn <mike@plan99.net>

523.

524.

525. It keeps getting extended all the time. If it stopped, an attacker would have time to catch up. Don't
worry, empty blocks aren't very big.

526.

527. As you say, it's the order of events that matters.

528.

529. ----------

530. From: Mike Hearn <mike@plan99.net>

531. Date: Mon, Apr 13, 2009 at 11:18 PM

532. To: Satoshi Nakamoto <satoshin@gmx.com>

533.

534.

535. Oh yes, of course, that's fundamental. Silly me. Thanks for your

536. answers. I'd recommend being over-explicit for early versions of the

537. software, something like "Global chain is currently %d blocks long".

538.

539. I guess the key problem right now is that once you generate coins,

540. there's nobody to test it with, even for dummy transactions. Is there

541. a plan for a mailing list or some kind of trivial marketplace to give

542. people something to do with their newly minted bitcoins?

543.

7.7 W) [——

545. From: Satoshi Nakamoto <satoshin@gmx.com>

546. Date: Tue, Apr 14, 2009 at 7:41 PM

547. To: Mike Hearn <mike@plan99.net>

548.

549.

550. I started implementing a marketplace feature earlier that facilitates offering things for sale and
taking orders, it's only half done though. A bit like e-bay but without auctions, just "buy now". Among
other things, it would make it easy for anyone to offer currency exchange.

551.

552. If you send to 1PhUXucRd8FzQved2KGK3gleKfTHPGjgFu and e-mail me your bitcoin address, or IP if you can
accept incoming connections, I'll send back the same amount +50.

553.

554, ----------

555. From: Mike Hearn <mike@plan99.net>

556. Date: Sat, Apr 18, 2009 at 3:08 PM

557. To: Satoshi Nakamoto <satoshin@gmx.com>

558.

559.

560. Hi Satoshi,

561.

562. I sent you 32.51 coins, my bitcoin address is 1JuEjh9znXwqsy5RrnKqgzqY4Ldg7rnj5n

563.

564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.

580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612.
613.

My IP is currently 84.73.233.199, however, it's a laptop so may or may
not be online at the time you act on this mail. I suggest using the
bitcoin address instead. It'd be convenient if the same comment
functionality was available via indirect transfer. Can the comment be
encrypted using the public key of the receiver and placed into a
block?

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Sat, Apr 18, 2009 at 6:16 PM
To: Mike Hearn <mike@plan99.net>

I sent back 32.51 and 50.00.

I badly wanted to find some way to include a comment with indirect transfers, but there just wasn't a
way to do it. Bitcoin uses EC-DSA, which was essential for making the block chain compact enough to b
practical with today's technology because its signatures are an order of magnitude smaller than RSA.
EC-DSA can't encrypt messages like RSA, it can only be used to verify signatures.

From: Mike Hearn <mike@plan99.net>
Date: Sat, Apr 18, 2009 at 9:25 PM
To: Satoshi Nakamoto <satoshin@gmx.com>

Thanks. I sent you back 50, so now we're even.

For some reason your transfer to me shows up as "From: unknown" even
though I added you to my address book.

I have a "Generated (not accepted)" line in my transaction list, it
seems like an attempt to generate a coin went wrong somehow. Not sure
what happened here - presumably my node successfully solved a block
but then I went offline before it was sent to the network?

I suppose for sending metadata with a transaction some other mechanism
will be needed, for instance, broadcast of encrypted messages
associated with a transaction that persist for (say) a month, with
some kind of budget on how much storage a node can use for messages.
Alternatively, a payee could generate some reference number which is
of some significance to themselves but otherwise opaque, and give it
to the payer, thus it does not need to be encrypted and can be put
into the block directly.

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Sat, Apr 18, 2009 at 10:52 PM
To: Mike Hearn <mike@plan99.net>

Got the 50.

e
But

614.

615.
616.

617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.

637.
638.

639.
640.

Transactions sent to a bitcoin address will always say "from: unknown". The transaction only tells who
it's to. Sending by bitcoin address has a number of problems, but it's so nice having the fallback
option to be able to send to anyone whether they're online or not. There are a number of ideas to try to
improve things later. For now, if things work out like the real world where the vast majority of
transactions are with merchants, they'll pretty much always make sure to set up to receive by IP. The
P2P file sharing networks seem fairly successful at getting a large percentage of their users to set up
their firewalls to forward a port.

The "Generated (not accepted)"” normally happens if two nodes find a block at close to the same time, one
of them will not be accepted. It's normal and unavoidable. I plan in v@.1.6 to hide those, since they're
just confusing and annoying and there's no reason for users to have to see them. While the network is
still small like it is now, if you can't receive incoming connections you're at more of a disadvantage
because you can't receive block announcements as directly.

From: Mike Hearn <mike@plan99.net>
Date: Sat, Apr 18, 2009 at 11:23 PM
To: Satoshi Nakamoto <satoshin@gmx.com>

From: Satoshi Nakamoto <satoshin@gmx.com>
Date: Sun, Apr 19, 2009 at 2:14 AM
To: Mike Hearn <mike@plan99.net>

The list is:

bitcoin-list@lists.sourceforge.net

Subscribe/unsubscribe page:
http://lists.sourceforge.net/mailman/listinfo/bitcoin-list

Archives:
http://sourceforge.net/mailarchive/forum.php?forum_name=bitcoin-1list

I'll always announce new versions there. Automatic update, or at least notification of new versions, is
definitely on the list. There could potentially be necessary changes in the future where nobody will
want to talk to you until you upgrade, and there needs to be code in the older version to convey that to
the user. This is all the harder in the context of not trusting anyone.

Your approach to micropayments sounds right. At first, it might be a good idea to default to asking
permission until the user gets comfortable and is ready to set it to automatic. The end goal though
should get to something like you describe, where it's similar to using your cell phone without really
having to think about the per minute charges.

I looked at Google protocol buffers when they were released last year, but I had already written
everything by then. What I did was something similar to Boost Serialisation. For this application, where
I was parsing messages from strangers who might have extreme incentive to hack the protocol, it was
necessary to make it as basic as possible so I could crawl over every line of code to convince myself it
was airtight. It became clear that any unnecessary degrees of freedom in the binary format multiplied
the potential angles of attack. You guys are so right though to standardize across the company on
protocol buffers. I think you've got the optimal solution in the general case.

